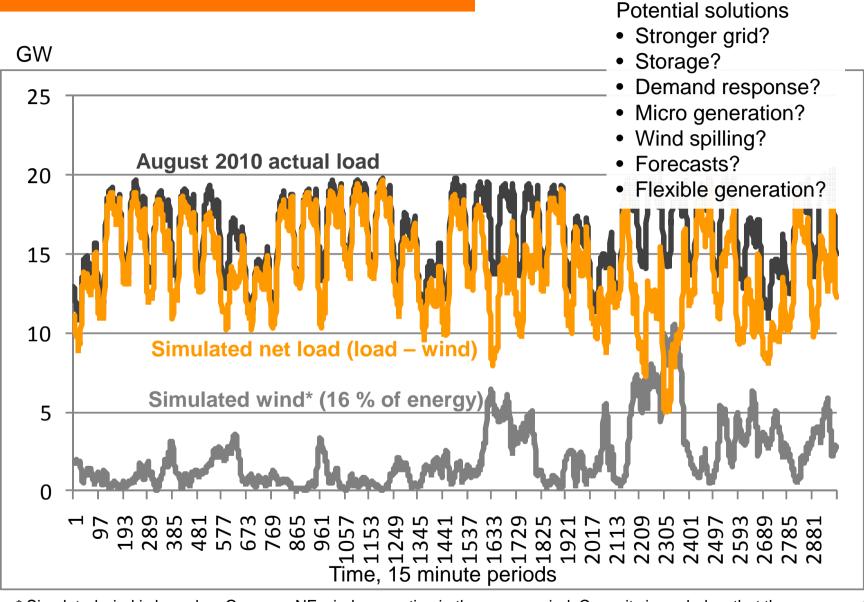
WHAT OPTIONS ARE THERE FOR INTEGRATION OF RENEWABLE ENERGY SOURCES?

MIKKO SYRJÄNEN WÄRTSILÄ POWER PLANTS

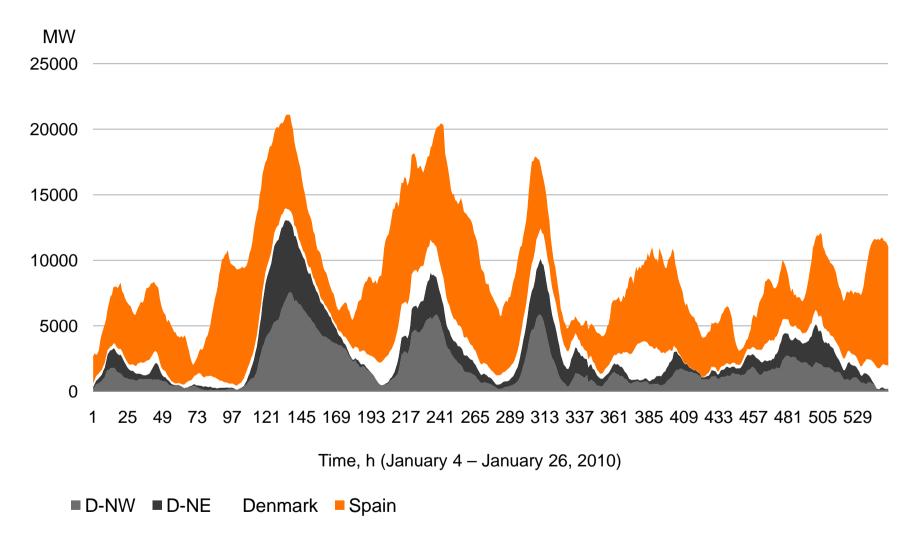
Power Ring 2010 Warsaw, Dec. 20, 2010

The challenge of renewable electricity in Poland


- Demand expected to increase
 - Consumption expected from 140 TWh to 170 in 2020 and 217 in 2030
 - Peak from 25 GW to 34.5 by 2030
- Goal is to diversify fuel mix
 - Currently about 92 % of energy and 89 % of capacity is coal
- Commitment to 20 % renewable target
 - If only wind capacity is increasing, about 17 GW is needed by 2020
- Aging infrastructure in transmission, generation and district heating

Wind impact on conventional generation:

- → Capacity has to be maintained due to intermittent nature of wind power
- Lower running hours and lower average load = less income
- → More starts and stops, faster ramp ups and downs, more part load operation = lower efficiency, starting costs & cycling damage
- → Lower average market price due to certificates


Wind integration in Poland?

* Simulated wind is based on Germany NE wind generation in the same period. Capacity is scaled so that the wind covers 16 % of the energy demand.

Wind patterns in Europe

Wind integration in Poland – Potential options?

- Balancing wind with strong interconnections only is not a solution, when there is too much wind, there is typically too much wind all over the Europe
- Storage has limitations in large scale too long storage times/too much capacity is needed
 - Hydro and pump hydro works, but is not sufficient. E.g. limitations in water level variation limit the potential
 - Requires grid investments as hydro resources are located far from wind generation, very costly if matching the maximum wind generation (i.e. no wind spilling)
- Demand response definitely beneficial and needed, but cannot handle the long term variation; consumers' willingness to participate is doubtful
- Micro generation is expensive and solar PV also intermittent
- Wind spilling works for limiting the extreme impacts without too much lost energy but will save in grid investments, want to avoid in order not to lose free energy
- Forecasts needed and helpful give time for response, but do not remove intermittency
- After all also conventional generation has to respond -> smart power generation
 - Shut down when there is too much wind, run when needed
 - Generation technology mix has to be reconsidered
- Conclusion: a full pallet of solutions is needed and a firm policy to support that

Characteristics of Smart Power Generation

Flexibility - runs when needed and doesn't run when not needed

- Fast start up & shut down times without cost impact
- Fast ramp rates up & down
- Unrestricted up/down times
- High availability and starting reliability

Any output with high efficiency (€/MWh)

- Part load operation
- Flexible plant size and siting close to loads
- CHP with heat storage where applicable

Low capital cost (€/kW)

Communication with smart grid

 Possibility for automatic response and start & stop

Low environmental impact

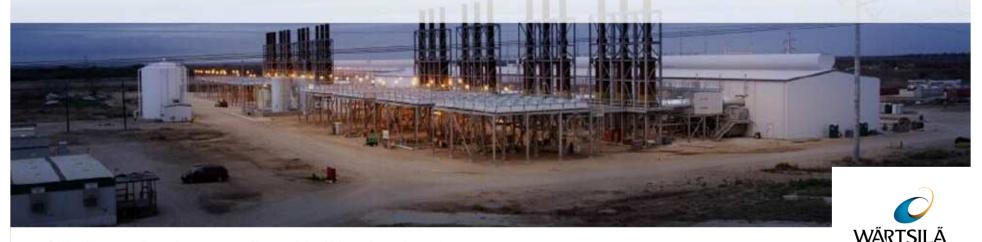
 CO₂ and traditional emissions even when ramping and on part load

Fuel flexibility

Smart power generation for wind integration?

Planning the long term solution mix for wind integration on the system level

- Wind is the key technology for meeting the renewables target by 2020. Find the most economical solution mix for integration?
- Power generation has to be part of the solution mix increase flexibility


Combining power generation and district heating offers room for innovative solutions

- Danish examples of combining combustion engine power plant, conventional boiler, heat accumulator (storage) and electric boiler
- ightarrow Increase the overall efficiency (lower fuel consumption) of thermal plants with CHP
- → Flexible engine plant and storage enable decoupling power generation from heat demand
 generate power when the price is high
- \rightarrow Electric boiler allows storage of excess wind power use when price is very low **Need policies to guide the system to the wanted solution mix**

Example: Skagen CHP Plant

- CHP capacity: 13 MWe and 16 MWth
 - Three 4.3 Mwe Wärtsilä Natural Gas engines
- 250 MWh heat storage
- 37 MW peak load boilers
- 10 MW electric boiler
- Heat pumps investment under consideration
- Operated together with a waste Incineration plant (heat only).

Towards smart power generation? – what is needed?

- 1. Better understanding of the challenges the system faces and the need for wide range of solutions from grid investments to smarter generation
 - Supporting capacity has to be maintained due to intermittent nature of wind
 - Challenging environment for conventional capacity
 - Lower running hours and lower average load for conventional capacity = less income
 - More starts and stops, faster ramp ups and downs, more part load operation = lower efficiency, starting costs, cycling damage & higher emissions
- 2. Planning the long term solution mix on the system level
 - Which technologies are part of the solution, e.g. how much flexible capacity is wanted or how much wind can be spilled?
 - E.g. are CHP plants with heat accumulators and electric boilers part of the picture? (Danish model)
- 3. Policies to guide the system to the wanted solution mix
 - Guarantee sufficient generation capacity Energy only markets do not give incentives for sufficient capacity in the new world
 - If CHP is part of the solutions, integrate district heating in the policy

Towards smart power generation? – what is needed?

- 4. Quicker response for short term balancing requires new type of markets (or other incentive mechanisms) shorter time periods etc.
 - Markets should be neutral for demand and supply response or a combination of these
 - Enable smooth collaboration between response mechanisms in different types of balancing needs
 - Different time scales require different response (e.g. limited storage & time to start up generation) -> need to forecast. Is it possible to automate?
- 5. Policy makers (regulators etc.) are the drivers
 - Responsibilities, market structures, goals, etc.
 - System benefits v.s. private benefits need for new types of incentive mechanisms
 - Avoided capacity cost, savings from wind spilling, etc.
 - Agree on the information that is shared (response time, length, current status...) and rules for the response / market mechanisms

Smart Power Generation

